Overexpression of bone morphogenetic protein 10 in myocardium disrupts cardiac postnatal hypertrophic growth.

نویسندگان

  • Hanying Chen
  • Weidong Yong
  • Shuxun Ren
  • Weihua Shen
  • Yongzheng He
  • Karen A Cox
  • Wuqiang Zhu
  • Wei Li
  • Mark Soonpaa
  • R Mark Payne
  • Diego Franco
  • Loren J Field
  • Vicki Rosen
  • Yibin Wang
  • Weinian Shou
چکیده

Postnatal cardiac hypertrophies have traditionally been classified into physiological or pathological hypertrophies. Both of them are induced by hemodynamic load. Cardiac postnatal hypertrophic growth is regarded as a part of the cardiac maturation process that is independent of the cardiac working load. However, the functional significance of this biological event has not been determined, mainly because of the difficulty in creating an experimental condition for testing the growth potential of functioning heart in the absence of hemodynamic load. Recently, we generated a novel transgenic mouse model (alphaMHC-BMP10) in which the cardiac-specific growth factor bone morphogenetic protein 10 (BMP10) is overexpressed in postnatal myocardium. These alphaMHC-BMP10 mice appear to have normal cardiogenesis throughout embryogenesis, but develop to smaller hearts within 6 weeks after birth. alphaMHC-BMP10 hearts are about half the normal size with 100% penetrance. Detailed morphometric analysis of cardiomyocytes clearly indicated that the compromised cardiac growth in alphaMHC-BMP10 mice was solely because of defect in cardiomyocyte postnatal hypertrophic growth. Physiological analysis further demonstrated that the responses of these hearts to both physiological (e.g. exercise-induced hypertrophy) and pathological hypertrophic stimuli remain normal. In addition, the alphaMHC-BMP10 mice develop subaortic narrowing and concentric myocardial thickening without obstruction by four weeks of age. Systematic analysis of potential intracellular pathways further suggested a novel genetic pathway regulating this previously undefined cardiac postnatal hypertrophic growth event. This is the first demonstration that cardiac postnatal hypertrophic growth can be specifically modified genetically and dissected out from physiological and pathological hypertrophies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia

Biochemical experiments have shown that Smad6 and Smad ubiquitin regulatory factor 1 (Smurf1) block the signal transduction of bone morphogenetic proteins (BMPs). However, their in vivo functions are largely unknown. Here, we generated transgenic mice overexpressing Smad6 in chondrocytes. Smad6 transgenic mice showed postnatal dwarfism with osteopenia and inhibition of Smad1/5/8 phosphorylation...

متن کامل

Single Nucleotide Polymorphism Analysis of the Bone Morphogenetic Protein Receptor IB and Growth and Differentiation Factor 9 Genes in Rayini Goats (Capra hircus)

The FecB, a mutation in the bone morphogenetic protein receptor IB (BMPR-IB) gene, which increases the fecundity of Booroola Merino sheep, and FecGH, a mutation in the Growth and Differentiation Factor 9 (GDF9), which affects the fecundity of Cambridge and Belclare sheep in a dose sensitive manner, were analyzed as candidate genes associated with the prolificacy in Rayini goats. These polymorph...

متن کامل

Conditional transgenic expression of fibroblast growth factor 9 in the adult mouse heart reduces heart failure mortality after myocardial infarction.

BACKGROUND Fibroblast growth factor 9 (FGF9) is secreted from bone marrow cells, which have been shown to improve systolic function after myocardial infarction (MI) in a clinical trial. FGF9 promotes cardiac vascularization during embryonic development but is only weakly expressed in the adult heart. METHODS AND RESULTS We used a tetracycline-responsive binary transgene system based on the α-...

متن کامل

DYRK2 Negatively Regulates Cardiomyocyte Growth by Mediating Repressor Function of GSK-3β on eIF2Bε

BACKGROUND A prerequisite of hypertrophic response of the myocardium is an increase in protein synthesis. A central regulator of translation initiation is Eukaryotic initiation factor 2B (eIF2B). Here we assessed the hypothesis that regulation of protein synthesis via eIF2Bε is essential to cardiac hypertrophic response in vivo. METHODS Two transgenic mouse lines were generated with cardiac r...

متن کامل

Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3.

Receptors for bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGFbeta) superfamily, are persistently expressed during cardiac development, yet mice lacking type II or type IA BMP receptors die at gastrulation and cannot be used to assess potential later roles in creation of the heart. Here, we used a Cre/lox system for cardiac myocyte-specific deletion of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 37  شماره 

صفحات  -

تاریخ انتشار 2006